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M I X I N G  I N  A S Y S T E M  O F  P L A N E  C O C U R R E N T  J E T S  
O F  A N  I N C O M P R E S S I B L E  L I Q U I D  O V E R  T H E  M A I N  
P O R T I O N  
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We consider mixing in a periodic system of plane subsonic jets of an incompressible liquid for laminar and 

turbulent/lows. Asymptotic expressions for the change in the velocity defect are obtained. A comparison with 

a numerical calculation and with existing experimental data is carried out. We show that under the 

conditions considered the accuracy of the expressions derived is rather high and they can be used for 

evaluating the mixing velocity over the main portion of mixing. 

Systems of plane parallel jets are met with in technological devices, combustion chambers, gas lasers, etc. 

Moreover, such a system is the simplest model for complex three-dimensional systems of jets widely used in 
technology. In view of this, determination of the mixing velocity in a system of plane jets is of practical interest. 

For this purpose use is frequently made of methods developed for mixing a single jet; however, use of these methods 

to calculate mixing of a system of jets leads to incorrect results, since the regularities of the process are of a different 
nature in this case. 

A theoretical solution of this problem for turbulent gas jets was suggested in a number of works (e.g.,  

[1-5]); the authors of these works used mainly numerical methods. Good agreement with experiment was obtained 
on the assumption that the turbulent viscosity was constant over the main portion of mixing; however, the general 
regularities of the change in the velocity defect and other quantities remained unclarified. 

Below we consider an infinite periodic system of plane subsonic cocurrent jets of an incompressible liquid 
under conditions where it is possible to use two-dimensional equations in the narrow-channel approximation. In 

the initial cross section the profiles of the longitudinal velocity, temperature, and concentration have a stepwise 

character. The computational domain is bounded by the axes of two adjacent jets. Boundary conditions of symmetry 
are set on these axes. We will begin our consideration with the simplest case of laminar flow. We write the equations 

of continuity and motion for plane jets in the narrow channel approximation: 

Ou/Ox + OvlOy = O, (1) 

u Ou/Ox + v Ou/Oy = v O2u/Oy 2 - ( l / p )  d P / d x  

with boundary conditions on the axes of the jets: 

y = O , + - L , + . 2 L  . . . .  : Ou/Oy=O,  v = O .  

(2) 

By virtue of the system periodicity, it is sufficient to consider the band 0 -< y -< L. Initial conditions are assigned 

in the cross section x -- 0: 

u (0, y) = u I for 0 < y < I l ; u (0, y) = u 2 for 11 -< y < L .  

At large values of the longitudinal coordinate the transverse velocity component tends to zero, and the longitudinal 
velocity component tends to a certain constant quantity u** that can be determined from the condition of flow-rate 

conservation: ull I + u212 = uo, L, where 12 -- L - 11. 
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Now we reduce the equations to dimensionless form, taking the quantity L as the scale of the transverse 
coordinate, the quantity ~l = R e L / u  2 as the scale of the longitudinal coordinate, and the quantity u| as the velocity 

scale. The Reynolds number is determined by the parameters of the completely mixed flow: Re = u|  
We expand the longitudinal and transverse velocity components into a Fourier series in the coordinate ~. 

With allowance for continuity equation (1) and the boundary conditions we have 

oo 

= I + aj cos (3) 
]=1 

e 

"v = - (L/gI2) a i ~ sin (sr/y"). (4) 
1=I 

The prime denotes differentiation with respect to ~. 

From the integral law of momentum conservation we obtain an expression for the pressure gradient: 

o o  
e d / a = -  aja/ (s) 

]=1 

where 

-- 2 P=P/p| u| (6) 

Substituting expansions (3)-(5) into Eq. (2), we derive a system of equations for the coefficients ai: 

f a/+Tas=-Fs( , /= 1,2, a ..... 

in which all the nonlinear terms are grouped in F/. 
Formally, the solution of (7) with allowance for the initial conditions can be written in the form 

(7) 

al ('s = exp (-12"s {ai~ - ~ Fi (~ exp (12~') d~} (8) 

The coefficients a/0 are determined using the expansion of the velocity profile into a Fourier series in the initial 

cross section, and under the initial conditions prescribed above they are equal to 

(9) alp = (2/~1) AT~ 0 sin (# i l l /L ) ,  

where A~o - (ul - u2)/u| is the dimensionless initial difference in the velocities of the jets. 

In the particular case where the transverse dimensions of the adjacent jets are equal, we have 

(- I) n2A~0/#/, j--2n+ I, (I0) 

a/~ 0, j=2n. 

Solution (8) is sought by means of successive approximations using, as the zero approximation, the 

distribution of the quantities at an infinite distance from the initial cross section (i.e., in the completely mixed flow, 

when a) ~ = 0). We substitute the expressions for a/E) obtained at the next step into F/G, etc. 
At the first step of the procedure we obtain 

a~l) = aio exp (-1~-)x . 

Thus, the first approximation coincides with the solution of the linearized equation 0~/0~ -- (I /~2) 0a~/0~-2. 
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Fig. 1. Change in the velocity defect (a) and the dimensionless pressure 
gradient (b) for laminar mixing and Re -- 35 (1), 70 (2), 105 (3); curves, 

formulas (11) (a) and (13) (b); points, numerical calculation. 

The second approximation for the coefficients a] has the form of a series of decreasing exponents. For the 
distant region of mixing it might be expected that already the first approximations describe rather accurately the 

solution of system (1)- (2). 
For the difference in the velocities on the axes of the adjacent jets Au ffi u(x, O) - u(x,  L) we have the 

following expression: 

A ~ =  2(a I ~ + aa(~- ) + as(~" ) + ...). 

At large distances from the initial cross section the change in A~(~') will be determined by the most slowly 

decreasing exponent, namely, exp (-x-), which enters the coefficient al ~ in the first harmonic. Thus, already the 
first approximation (or the solution of the linearized equation) gives the asymptotically correct behavior of A~(~') 

for x -~ ~:  

A u / A u  0 = C u exp ( -  x / k ) .  (11)  

We determine the coefficient Cu from the second approximation: 

c .  = (z41/ r,o) = • 

• sin (~/1/L) + (AT~0/2~) i ~ u 1) sin ( /~l l /L)  sin ((i + 1) ~l  I / L )  . (12) 
i= l  

In the case Ii - / 2 -  I , /2 ,  A I = a lO (since all the products a~oai+ 1,0 are equal to zero ), i.e., the preexponential 
factors in Eq. (1 I) obtained in the first and second approximations also coincide. As the number i increases, the 
terms of the series in Eq. (12) decrease as 1 / i  2. This makes it possible to confine oneself in the calculation to a 

finite number of terms. To find the sum of the series with an accuracy of 10%, it is sufficient to take into account 

4 to 10 terms depending on the ratio 11/L. 

From expression (11) the meaning of the quantity A becomes clear: it is the characteristic length of mixing 

along which the velocity defect decreases by a factor of e. This quantity is determined by the integral characteristics 
of the flow; the preexponential factor Cu depends on the ratio of the dimensions and the initial velocities of the 
jets: Cu = Cu( l l / L ,  A~0). When the transverse dimensions of the jets are equal ( I ] /L  = I /2 ) ,  the dependence on 

A~o drops out and Cu becomes constant: Cu = 4 /~ ,  i.e., the mixing of the flows over the main portion in this case 
is determined by just one quantity, namely, the Reynolds number calculated from the parameters of the mixed 

flow. 
The expression for the dimensionless pressure gradient corresponding to Eq. (11) has the form 
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d P / d x  = (A1//I) 2 exp ( -  2 x / , l ) .  (13) 

Results of numerical solution of Eqs. (1) and (2) confirm the suitability of the expressions obtained. Figure 

la illustrates the change in the velocity defect obtained in the numerical calculation and from formula (11) for Ii 

" 12 " L / 2 ,  A~O - 0.667 (or Ul/U2 " 2). A graph of the change in the dimensionless pressure gradient under the 
same conditions is given in Fig. lb. It is seen that the accuracy of approximate asymptotic solutions (I I) and (13) 

is rather high already at the beginning of the main portion of mixing. 

From the results of the numerical calculations one can see that the expressions obtained remain valid in a 

wide range of change of the difference in the velocities of the flows and the ratio of their half-heights, at least up 

to u l / u 2  - 5 and  11/12 "" 3. 

Now we will consider turbulent mixing. For this, we use the gradient hypothesis for turbulent stresses. It 
is assumed that the turbulent viscosity is much greater than the intrinsic gas viscosity. 

Instead of Eq. (2) we will have the expression (the special symbols for averaged quantities are omitted) 

u Ou/Ox + v Ou/Oy = O/Oy (1, t OulOy) - ( I / p )  d P / d x .  (14) 

We assume that the turbulent viscosity vt over the portion of interest changes but slightly over the cross 
section. The validity of this assumption will be shown below. Then, having defined the scale of the longitudinal 

coordinate as ~ n ReL/~r 2, Re - u~L/v tao  , we obtain, similarly to the previous case, an equation for the Fourier 
coefficients: 

da//d'i + fl ~t ('s ai = - F: (~') , .i= 1 , 2 , 3  . . . .  (15) 

In order to integrate this equation, it is necessary to determine the specific form of the dependence ~t(~'). For this 

purpose we will consider two well-known models of turbulence. 

a) The "new" Prandtl model 

v t = x l A u ,  (16) 

where l is the scale, which is usually taken to be the jet width; here we take l = L. Within the framework of the 

present model the turbulent viscosity is constant over the cross section. The use, in Eq. (16), of the difference in 

the velocities on the axes of adjacent flows, which decreases downward along the flow, leads to the following 
asymptotic behavior of the velocity defect in the limit as ~ -~ ~: 

- - 1  
A u / u |  - x  

Numerical calculations carried out using the "new" Prandtl model give the same result. However the 

experiments conducted in [3-5 ] indicate an exponential drop in Au over the main portion. Possibly, this discrepancy 

is associated with the fact that in reality the scale I is not constant and it increases in such a way that it compensates 
for the decrease in Au. 

In [3, 4 ], in calculations of turbulent mixing using the Prandtl model it was assumed that the turbulent 

viscosity over the main portion of mixing was constant and equal to xLAuo. Use of this combination gives for the 
velocity defect an expression that is completely analogous to that obtained for laminar mixing: 

A u / A u  0 = C u exp ( -  x / 2 )  . 

The coefficient Cu is prescribed by formula (12). Taking into account the definition of turbulent viscosity within 
the framework of the model adopted, we have Ret = u**/Auo~. Thus, according to the given model, the velocity 

defect decreases over the main portion exponentially and more rapidly, the greater the initial difference in the 

velocities of the jets. It should be noted that the coefficient Cu before the exponent also depends on the initial 
difference in the velocities. 
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Fig. 2. X I o / L  versus the ratio of the half-heights of adjacent jets for a ratio 
of the flow rates of 0.25 (1), 1 (2), 4 (3). 

Now we consider the question of the influence of the initial parameters on the process of mixing. We assume 
that the miscible jets differ in composition; the density is considered to be constant. The equation for the 
concentration of a mixture component has the form 

-~ oY~/O'~ + ~ oY~,/oy = ( i /Se t  ~2) o2Yk/Oy 2 

with the boundary conditions: 

~ = 0 , 1 :  OYk/O-~ = O. 

Here Set is the turbulent analog of the Schmidt number. 

In the same way as was done for the velocity, it is possible to obtain the following expression for the change 

in the concentration defect over the main portion: 

A Y k l A Y k o  = C k exp (-- X/2c)  , (17) 

where ;tc - R e t ~ L / ~  2 - SctL/k~z2Auo and C~ - Cu. 

Figure 2 presents the dependence of the length x l o / L ,  over which the initial difference in the concentrations 
decreases by a factor of 10, on the ratio between the half-heights of the jets for different ratios of the flow rates. 

For each curve the flow rates were assumed to be fixed and ul >- u2. From this it is clear that an increase in 

l t / L  is equivalent to a decrease in A~o. Since within the scope of the given model the turbulent viscosity is 
completely determined by the difference in the jet velocities, with decreasing A~O the mixing is sharply retarded. 

We note that the expression used for the turbulent viscosity ignores the initial turbulence of the jets. In 
view of this, we will consider a more complex model. 

b) The k - e  model 

u Ok/Ox + v Ok/Oy = O/Oy ( v t / o  k Ok/Oy) + v t (Ou/Oy) 2 - e ,  

u Oe/Ox + v Oe/Oy = O/Oy ( v t / a  ~ Oe/Oy) + 

�9 4- C 1 ( e / k )  v t ( 0 u / 0 y )  2 - C 2 e 2 / k ,  

v t = Cg k 2 / e .  

The boundary conditions are: 

y = O,L : Ok/Oy = Oe/Oy = O. 
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To evaluate the behavior of the turbulent viscosity over the main portion, we will avail ourselves of the 
following considerations. At large distances from the initial cross section the changes in the parameters across the 

flow become insignificant. Consequently, to determine the asymptotic behavior of the turbulence parameters, we 
must solve the equations 

u |  = - e ; u |  = - C 2 e 2 / k .  

We integrate this system of equations and, as the final result, obtain an expression for the turbulent viscosity: 

v i / v  ~ = (1 + (C 2 - 1) (%/. kou| x)  - (2 -C2)1(C2-1)  . (18) 

For the typical value of C2 - 1.92 the exponent is equal to -0 .087,  i.e., the turbulent viscosity changes but slightly, 

and over a not very large interval it can be considered to be constant. To evaluate this interval, we take the following 
relation between e0 and ko: eo - 0.3koa/2/L. Then, the dimensionless length along which the turbulent viscosity 
changes by 5% is expressed as 

~'5% = 2.9 u |  12 

i.e., the lower the initial intensity of turbulence, the larger the distances at which the assumption of constancy of 

vt is valid. Thus, when k o / u  2 ,ffi 0.01, 75% - 29, while when k o / u  2 ffi 0.1, 75% - 9. if we take into consideration 

that with an increase in the initial level of turbulence, mixing occurs more rapidly, it can be concluded that the 
assumption of constancy of the turbulent viscosity over the main portion does not lead to substantial errors in 
determining the length of mixing. 

The same conclusion follows from numerical calculations carried out using the k - e  turbulence model; from 

these calculations one can see that at a sufficient distance from the initial portion of mixing the turbulent viscosity 

changes comparatively slightly over beth the transverse and longitudinal coordinates and that it can be taken to be 

constant. Assuming the turbulent viscosity to be constant over the main portion, we obtain an expression similar 
to formula (11) for laminar mixing: 

A u l A u  0 = C u exp ( -  x / t ) .  (19) 

H e r e t  - Rc tL /~  2, Rct 'ffi Lu| and Vt.ef is a certain effective value of the turbulent viscosity for the main portion. 

This value should be determined by the initial intensity of the jet turbulence and the generation and dissipation 
of turbulence in the layer of mixing. 

To construct an appropriate approximation of Vt.ef as a function of k0 and Auo, we will avail ourselves of 

the following considerations. We write averaged equations for k and e over a cross section and assume that all the 
turbulence parameters (k, e, vt) change only slightly over the jet cross section: 

d k l d t  = v i ( (OulOy)$  - t ,  (2o) 

d e / d t  = Clv  t ( e / k )  ((Ou/Oy) 2) - C 2 e 2 / k .  (21) 

Here, the angular brackets denote averaging over the jet cross section. 

Now we introduce the auxiliary function 7' defined by the equality 

e l k  = 7 ' / ( C 2  - 1) ~o, (22) 

where the prime denotes differentiation with respect to t. Using Eqs. (20) and (21), for 7~ we obtain the expression 
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~o = C/~ (C, - 1) (C 2 - 1) ((Ou/Oy) 2) ~o (23) 

with the initial condition 

e 

(~o / Io)0  ---- (C  2 - l )  ( e / ] r  (24) 

For any combination of �9 and k of the form F = kne m, with allowance for Eqs. (20) and (21) it is possible 

to write 

f 1 
d F / d t  = F l ( n  + C l m  ) C F ((c~U/Oy)-) ( k / t )  - (n + C2m ) ( e / k ) ~  . 

Then, taking into account definition (22) of the function ~o and Eq. (23) for it, we express an arbitrary combination 

of �9 and k in terms of ~o and ~o' in the following manner: 

. ' .  ' . a  b 
F / F  0 = t~o/~o 0) (Io/~o 0) , 

where a -  (n + m C I ) / ( C I  - 1); b = - ( n  + mC2)(C2  - 1). In particular, for the turbulent viscosity (n - 2, m - - 1 )  

we have 

. ' .  ' . a  b 
v t /v to  = (~, /~Oo) (io/~,o) , (2s) 

where a -  (2 - C I ) ( C I  - 1); b -  - ( 2  - C2) (C2 - 1). 
As is known, the solution of a linear second-order equation in general form can be represented as a linear 

combination of two finearly independent solutions: ~o - Al~O 1 + A2~o2. S i n c e  a l l  the expressions of interest involve 

only the ratios of ~o and ~,' to their initial values, it is possible to eliminate one of the constants, for example, ,42, 
assuming it tO be equal to I. The second constant is determined from initial condition (24). 

Since the initial value of �9 is usually prescribed in the form e0 = Ceko~Z/L, we obtain 

(26) 

where c - C~ /  (C2 - I)L. 
Let us assume that the dependence of ~o on the initial level of turbulence (i.e., on k0) is completely 

concentrated in the coefficient A1, i.e., the solution of Eq. (23), depending on the problem parameters, looks like 

= (go, Auo) (Auo) + (Au0), (27) 

which seems to be valid at least if the initial turbulence intensity is small compared to that generated in the mixing 

layer. Then, substituting Eqs. (26) and (27) into (25), we come to the following expression for the turbulent 

viscosity: 

- / k l / 2 ] a  !~0/2] b 
vt.e /v  = [A + h o [/3 + h , 

(28) 

where the functions fi depend on the initial difference in the flow velocities Au0, but not on the initial turbulence 

Taking the values of the empirical coefficients C1 = 1.44, C2 = 1.92, typical for the k - e  model, we obtain 

- 0 0 8  in the exponent of the second factor and we will consider this factor to be constant and equal to unity. Then 

we represent the functions fl and f2 in the form of a series in powers A u o / u =  and limit ourselves to quadratic terms. 

Approximation by results of numerical calculations gave 

fl = 1 - 2.8 Auo/uoo + 6.0 (Auo/u~o) 2 , 
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Fig. 3. Change in the velocity defect in turbulent mixing: points) experiment 
[4 ]; solid curve) numerical calculation; dashed curve) formulas (19), (28), 
(29). 

/2 = ( -  0.03I Auo/u |  - 0 . I8  (AUo/U=) 2) Au o . (29) 

The error in determining the exponent in expression (19) using Eq. (28) and approximation (29) does not 
exceed 10% for values of Auo/u= from 0 to 0.67 and k01/2/Auo in the interval 0.15-0.3.  

The relations obtained for turbulent mixing (19) need experimental verification. Figure 3 presents 
experimental data, obtained in [4 ], on the change in the velocity defect over the main portion of mixing in a system 
of plane isothermal turbulent jets. Unfortunately, experimental data on the initial turbulence level or the magnitude 
of the turbulent viscosity over the main portion of mixing are not presented. For comparison, we give results of a 
numerical calculation for ko~/U~ - 0.0I 17 (the solid curve). As is seen from this figure, in both the calculation and 
the experiment the velocity defect over the main portion of mixing decreases according to an exponential law with 
an exponent of -0.112.  Results of calculations carried out using formulas (19), (28), and (29) are illustrated by 
the dashed curve. The value of the exponent calculated from these formulas is 0.102. Other existing experimental 
results, including ones for nonisothermal jets [3-6 ], also obey an exponential relationship. 

Thus, mixing in a system of cocurrent jets over the main portion obeys the exponential law (11) and (19). 

N O T A T I O N  

x, y, coordinates; u, v, longitudinal and transverse velocity components; p, gas density; P, pressure; L, 
distance between the axes of adjacent jets; Ii, 12, half-heights of the flows; v, gas viscosity; Re, Reynolds number; 
2, characteristic length of jet mixing; aj, coefficients in the Fourier-series expansion for the longitudinal velocity; 
Au, velocity defect; Yk, concentration of the k-th component; Sc, Schmidt number; k, energy of turbulent pulsations; 
e, rate of turbulent-energy dissipation; ~o, function in Eq. (22). Subscripts: 0, values in the initial cross section; 
~ ,  characteristics of the completely mixed flow; overbar, dimensionless quantities. 
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